Expanding General Relativity in the Speed of Light

Gerben Oling

Nordita

Based on collaborations with Dennis Hansen, Jelle Hartong, Niels Obers and Benjamin Søgaard

University of Notre Dame @ London, August 18th 2022

Outline

- Introduction
- Newton-Cartan geometry
- Non-relativistic expansion of GR
- Carroll geometry
- Ultra-local expansion of GR

Why not relativistic?

What's wrong with Lorentzian symmetries?
Nothing, but string theory is hard!

My original motivation: holography

- dual models for non-relativistic strongly-coupled matter
- break Lorentzian symmetries using background fields [Taylor]
- intrinsic non-relativistic approach?

Related: non-relativistic strings and quantum gravity [Gomis, Ooguri] [Danielsson, Guijosa, Kruczenski]

- decoupling limit of string theory
- non-relativistic spectrum
- easier worldsheet theory?

See also our recent review on non-relativistic strings [GO, Yan]

Why not relativistic?

What's wrong with Lorentzian symmetries?
Nothing, but general relativity is also hard!

We know how Einstein gravity contains Newtonian gravity,

$$
g_{00}=-(1+2 \Phi), \quad v / c \ll 1, \quad \text { weak coupling }
$$

but where is the geometry? Not covariant! Galilean symmetries?
\Longrightarrow Newton-Cartan geometry! [Cartan] [Künzle] [Dautcourt] ..

Now understand better [Van den Bleeken] [Hansen, Hartong, Obers]

- how Newton-Cartan geometry arises from Lorentzian
- how Newtonian gravity arises from GR
- weak coupling and low velocity are independent

Main tool: covariant expansion of geometry in powers of c around $c \rightarrow \infty$ (Galilean) and $c \rightarrow 0$ (Carroll)

Outline

- Introduction
- Newton-Cartan geometry
- Non-relativistic expansion of GR
- Carroll geometry
- Ultra-local expansion of GR

Newton-Cartan geometry

Are used to 'relativistic' Lorentz boosts

$$
t \rightarrow t+\beta x, \quad x \rightarrow x+\beta t
$$

Non-relativistic limit $c \rightarrow \infty$ gives Galilean boosts

$$
t \rightarrow t, \quad x \rightarrow x+\lambda t, \quad \text { and } \quad \partial_{t} \rightarrow \partial_{t}+\lambda \partial_{x}, \quad \partial_{x} \rightarrow \partial_{x}
$$

Curved extension: not Lorentzian $g_{\mu \nu}\left(x^{\rho}\right)$ but Newton-Cartan, clock one-form $\tau_{\mu}\left(x^{\rho}\right)$ and spatial metric $h^{\mu \nu}\left(x^{\rho}\right)$

Complement with inverse $v^{\mu}\left(x^{\rho}\right)$ and $h_{\mu \nu}\left(x^{\rho}\right)$, satisfy

$$
v^{\mu} h_{\mu \nu}=0, \quad \tau_{\mu} h^{\mu \nu}=0, \quad \nu^{\mu} \tau_{\mu}=-1, \quad \delta_{\nu}^{\mu}=-v^{\mu} \tau_{\nu}+h^{\mu \rho} h_{\rho \nu}
$$

Transform under local Galilean boosts $\lambda_{\mu}\left(x^{\rho}\right)$ as

$$
\delta_{\lambda} \nu^{\mu}=\lambda^{\mu}, \quad \delta_{\lambda} h_{\mu \nu}=\lambda_{\mu} \tau_{\nu}+\tau_{\mu} \lambda_{\nu}
$$

Newton-Cartan geometry

Newton-Cartan: clock one-form $\tau_{\mu}\left(x^{\rho}\right)$ and spatial metric $h^{\mu \nu}\left(x^{\rho}\right)$

Clock form gives space-time structure:

- if $d \tau \neq 0$ but $\tau \wedge d \tau=0$ get spatial foliation
- if $d \tau=0$ have $\tau=d t$, so absolute time (path-independent)

Natural connection $\check{\Gamma}_{\mu \nu}^{\rho}=-v^{\rho} \partial_{\mu} \tau_{\nu}+\frac{h^{\rho} \sigma}{2}\left(\partial_{\mu} h_{\nu \sigma}+\partial_{\nu} h_{\sigma \mu}-\partial_{\sigma} h_{\mu \nu}\right)$

- is metric-compatible: $\check{\nabla}_{\mu} \tau_{\nu}=0$ and $\check{\nabla}_{\rho} h^{\mu \nu}=0$
- has minimal torsion $\check{T}^{\rho}{ }_{\mu \nu}=2 \check{\Gamma}_{[\mu \nu]}^{\rho}=2 \partial_{[\mu} \tau_{\nu]}$
- zero torsion \Longleftrightarrow absolute time

Associated curvature $\check{R}_{\mu \nu \rho}{ }^{\sigma}$ defined as usual

Newton-Cartan geometry and gravity

Newton-Cartan: clock one-form $\tau_{\mu}\left(x^{\rho}\right)$ and spatial metric $h^{\mu \nu}\left(x^{\rho}\right)$, connection $\check{\Gamma}_{\mu \nu}{ }_{\mu}$ and curvature $\check{R}_{\mu \nu \rho}{ }^{\sigma}$

Could also add Bargmann mass field $m_{\mu}\left(x^{\rho}\right)$ to Newton-Cartan geometry and connection

This allows for a curvature formulation of the Poisson equation

$$
\nabla^{2} \Phi=4 \pi G \rho
$$

Using the background geometry

$$
\tau_{\mu} d x^{\mu}=d t, \quad h^{\mu \nu} \partial_{\mu} \partial_{\nu}=\delta^{i j} \partial_{i} \partial_{j}, \quad m_{\mu} d x^{\mu}=\Phi d t
$$

the Poisson equation corresponds to

$$
\check{R}_{\mu \nu}=4 \pi G \rho \tau_{\mu} \tau_{\nu}
$$

Newton-Cartan geometry and gravity

Newton-Cartan: clock one-form $\tau_{\mu}\left(x^{\rho}\right)$ and spatial metric $h^{\mu \nu}\left(x^{\rho}\right)$, connection $\check{\Gamma}_{\mu \nu}^{\rho}$ and curvature $\check{R}_{\mu \nu \rho}{ }^{\sigma}$

Using the background geometry

$$
\tau_{\mu} d x^{\mu}=d t, \quad h^{\mu \nu} \partial_{\mu} \partial_{\nu}=\delta^{i j} \partial_{i} \partial_{j}, \quad m_{\mu} d x^{\mu}=\Phi d t
$$

get covariant curvature formulation of the Poisson equation

$$
\check{R}_{\mu \nu}=4 \pi G \rho \tau_{\mu} \tau_{\nu}
$$

However, this leaves many questions:

- why only this geometry? and why not dynamical?
- where did the m_{μ} field come from?
- how does Newton-Cartan arise from Lorentzian geometry?
- where did this equation of motion come from?
- geometrically, how does it arise from the Einstein equations?
- what are subleading corrections?

Outline

- Introduction
- Newton-Cartan geometry
- Non-relativistic expansion of GR
- Carroll geometry
- Ultra-local expansion of GR

Newton-Cartan geometry from Lorentzian

From Lorentzian geometry, can get Newton-Cartan by expanding around $c \rightarrow \infty$

Two-step process [van den Bleeken] [Hansen, Hartong, Obers]

Rewrite: in a given frame, choose time vector V^{μ} and rewrite

$$
g_{\mu \nu}=-c^{2} T_{\mu} T_{\nu}+\Pi_{\mu \nu}, \quad g^{\mu \nu}=-\frac{1}{c^{2}} V^{\mu} V^{\nu}+\Pi^{\mu \nu}
$$

This exposes overall factors of c^{2} in the metric
Expand: then Newton-Cartan geometry appears at leading order in $1 / c^{2}$ expansion,

$$
\begin{aligned}
T_{\mu} & =\tau_{\mu}+\frac{1}{c^{2}} m_{\mu}+\cdots, & V^{\mu} & =v^{\mu}+\cdots \\
\Pi^{\mu \nu} & =h^{\mu \nu}+\frac{1}{c^{2}} \Phi^{\mu \nu}+\cdots, & \Pi_{\mu \nu} & =h_{\mu \nu}+\cdots
\end{aligned}
$$

Local Lorentz symmetry \rightarrow local Galilei symmetry + corrections

Newton-Cartan geometry from Lorentzian

Newton-Cartan connection $\check{\Gamma}_{\mu \nu}^{\rho}$ and curvature $\check{R}_{\mu \nu \rho}{ }^{\sigma}$ can be obtained from Levi-Civita
First, rewrite Levi-Civita to expose overall factors of c^{2}, which gives

$$
\Gamma_{\mu \nu}^{\rho}=c^{2} S_{(-2)^{\rho}{ }_{\mu \nu}}+\bar{C}_{\mu \nu}^{\rho}+S_{(0)}{ }^{\rho}{ }_{\mu \nu}+\frac{1}{c^{2}} S_{(2)^{\rho}{ }_{\mu \nu},}
$$

where the $S^{\rho}{ }_{\mu \nu}$ are known tensors. Then expand to get $\bar{C}_{\mu \nu}^{\rho}=\check{\Gamma}_{\mu \nu}^{\rho}+\cdots$

Rewrite $\sqrt{-g}=c E$ where $E=\operatorname{det}\left(T_{\mu}, \Pi_{\mu \nu}\right)$ and expand $E=e+\cdots$ where $e=\operatorname{det}\left(\tau_{\mu}, h_{\mu \nu}\right)$

Finally, we can rewrite Levi-Civita Ricci scalar as

$$
R=c^{2} \Pi^{\mu \rho} \Pi^{\nu \sigma} \partial_{[\mu} T_{\nu]} \partial_{[\rho} T_{\sigma]}+\Pi^{\mu \nu} \bar{R}_{\mu \nu}+\frac{1}{c^{2}}\left[\mathscr{K}^{\mu \nu} \mathscr{K}_{\mu \nu}-\mathscr{K}^{2}\right]
$$

where $A_{\mu}=2 V^{\rho} \partial_{[\mu} T_{\rho]}$ is acceleration and $\mathscr{K}_{\mu \nu}=-\frac{1}{2} \mathscr{L}_{V} \Pi_{\mu \nu}$ is extrinsic curvature

Newton-Cartan gravity from GR

Can then rewrite the Einstein-Hilbert action of General Relativity

$$
\begin{aligned}
S & =\frac{c^{3}}{16 \pi G} \int_{M} R \sqrt{-g} d^{d} x \\
& \approx \frac{c^{6}}{16 \pi G} \int_{M}\left[\Pi^{\mu \rho} \Pi^{\nu \sigma} \partial_{[\mu} T_{\nu]} \partial_{[\rho} T_{\sigma]}+\frac{1}{c^{2}} \Pi^{\mu \nu} \bar{R}_{\mu \nu}+\frac{1}{c^{4}}\left(\mathscr{K}^{\mu \nu} \mathscr{K}_{\mu \nu}-\mathscr{K}^{2}\right)\right] E d^{d} x
\end{aligned}
$$

From Lorentzian point of view, this is a somewhat strange thing to do!

$$
\text { (} \bar{C}_{\mu \nu}^{\rho}=\check{\Gamma}_{\mu \nu}^{\rho}+\cdots \text { is neither flat nor Lorentz-metric-compatible nor torsion-free) }
$$

However it allows us to expand the action in $1 / c^{2}$, non-relativistic geometric expansion!

$$
S=c^{6} S_{\mathrm{LO}}+c^{4} S_{\mathrm{NLO}}+c^{2} S_{\mathrm{NNLO}}+\cdots
$$

At leading order,

$$
S_{\mathrm{LO}}=\frac{1}{16 \pi G} \int h^{\mu \rho} h^{\nu \sigma} \partial_{[\mu} \tau_{\nu]} \partial_{[\rho} \tau_{\sigma]} e d^{d} x \quad \text { leads to EOM } \quad \tau \wedge d \tau=0
$$

Newton-Cartan gravity from GR

First rewrite the Einstein-Hilbert action of General Relativity

$$
\begin{aligned}
S & =\frac{c^{3}}{16 \pi G} \int_{M} R \sqrt{-g} d^{d} x \\
& \approx \frac{c^{6}}{16 \pi G} \int_{M}\left[\Pi^{\mu \rho} \Pi^{\nu \sigma} \partial_{[\mu} T_{\nu]} \partial_{[\rho} T_{\sigma]}+\frac{1}{c^{2}} \Pi^{\mu \nu} \bar{R}_{\mu \nu}+\frac{1}{c^{4}}\left(\mathscr{K}^{\mu \nu} \mathscr{K}_{\mu \nu}-\mathscr{K}^{2}\right)\right] E d^{d} x
\end{aligned}
$$

then expand the action in powers of $1 / c^{2}$

$$
S=c^{6} S_{\mathrm{LO}}+c^{4} S_{\mathrm{NLO}}+c^{2} S_{\mathrm{NNLO}}+\cdots
$$

At leading order, get foliation condition

$$
S_{\mathrm{LO}}=\frac{1}{16 \pi G} \int h^{\mu \rho} h^{\nu \sigma} \partial_{[\mu} \tau_{\nu]} \partial_{[\rho} \tau_{\sigma]} e d^{d} x \quad \text { leads to EOM } \quad \tau \wedge d \tau=0
$$

At next-to-next-to-leading order retrieve Poisson equation as subset of EOM! (But pretty complicated!)

Newton-Cartan summary

So far,

- introduced Newton-Cartan geometry with local Galilean boosts
- obtained it at leading order in $c \rightarrow \infty$ expansion of Lorentzian geometry
- applied to the Einstein-Hilbert action
- derivation of Poisson equation from action principle for dynamical geometry!

Did not cover expansion of matter fields, solutions, geodesics ... [Van den Bleeken] [Hansen, Hartong, Obers]

Open problems:

- establish well-posed initial value problem
- NNLO theory looks complicated, but is it still easier than GR?

- make contact with numerical simulations?

Outline

- Introduction
- Newton-Cartan geometry
- Non-relativistic expansion of GR
- Carroll geometry
- Ultra-local expansion of GR

Carroll symmetries

Are used to `relativistic' Lorentz boosts

$$
t \rightarrow t+\beta x, \quad x \rightarrow x+\beta t
$$

Non-relativistic limit $c \rightarrow \infty$ gives Galilean boosts

$$
t \rightarrow t, \quad x \rightarrow x+v t
$$

- appears in Lorentzian geometry on null surfaces such as \mathscr{J}^{+}
- BMS asymptotic symmetries are isomorphic to conformal Carroll algebra [Duval, Gibbons, Horvathy, Zhang]

Carroll geometry

Are used to 'relativistic' Lorentz boosts

$$
t \rightarrow t+\beta x, \quad x \rightarrow x+\beta t
$$

Ultra-local Carroll limit $c \rightarrow \infty$ gives Carroll boosts

$$
t \rightarrow t+\lambda x, \quad x \rightarrow x \quad \text { and } \quad \partial_{t} \rightarrow \partial_{t}, \quad \partial_{x} \rightarrow \partial_{x}+\lambda \partial_{t}
$$

Geometry from time vector field $v^{\mu}\left(x^{\rho}\right)$ and spatial metric $h_{\mu \nu}\left(x^{\rho}\right)$ [Duval, Gibbons, Horvathy, Zhang] [Hartong] [Ciambelli, Marteau, Petropoulos...] [Hansen, Obers, GO, Søgaard]

Complement with inverse $\tau_{\mu}\left(x^{\rho}\right)$ and $h^{\mu \nu}\left(x^{\rho}\right)$, satisfy

$$
v^{\mu} h_{\mu \nu}=0, \quad \tau_{\mu} h^{\mu \nu}=0, \quad v^{\mu} \tau_{\mu}=-1, \quad \delta_{\nu}^{\mu}=-v^{\mu} \tau_{\nu}+h^{\mu \rho} h_{\rho \nu}
$$

Transform under local Carroll boosts $\lambda_{\mu}\left(x^{\rho}\right)$ as

$$
\delta_{\lambda} \tau_{\mu}=\lambda_{\mu}, \quad \delta_{\lambda} h^{\mu \nu}=\lambda^{\mu} v^{\nu}+v^{\mu} \lambda^{\nu}
$$

Carroll symmetries and flat holography

Holographic dual field theory for asymptotically flat spacetimes?
In $3+1$ dim: BMS_{4} asymptotic symmetries on $\mathscr{J}^{+} \simeq \mathbb{R} \times S^{2}$
supertranslations $u \rightarrow u+f(z, \bar{z})$

- ~ Carroll boosts at each (z, \bar{z})
- suggests $3 d$ Carrollian CFT dual: $\mathrm{BMS}_{4} \simeq \mathrm{CCar}_{3}$
superrotations $z \rightarrow g(z), \quad \bar{z} \rightarrow \bar{g}(\bar{z})$
- Virasoro symmetries of CFT_{2}
- suggests 2d celestial CFT dual: CCFT $_{2}$
u-direction enters in CCFT_{2} as conformal weight $\Delta \in 1+i \mathbb{R}$ [Pasterski, Shao, Strominger]

Few explicit CCFT_{2} theories known, but can construct CCar_{3} examples from $c \rightarrow 0$ limit

Outline

- Introduction
- Newton-Cartan geometry
- Non-relativistic expansion of GR
- Carroll geometry
- Ultra-local expansion of GR

Carroll expansion of GR

Can also apply $c \rightarrow 0$ Carroll expansion to general relativity [Hansen, Obers, GO, Søgaard]

Using previous metric parametrization and expansion

$$
\begin{array}{lll}
g^{\mu \nu}=-\frac{1}{c^{2}} V^{\mu} V^{\nu}+\Pi^{\mu \nu} & V^{\mu}=v^{\mu}+c^{2} M^{\mu}+\cdots & \Pi^{\mu \nu}=h^{\mu \nu}+\cdots \\
g_{\mu \nu}=-c^{2} T_{\mu} T_{\nu}+\Pi_{\mu \nu} & T_{\mu}=\tau_{\mu}+\cdots & \Pi^{\mu \nu}=h^{\mu \nu}+\cdots
\end{array}
$$

can rewrite Einstein-Hilbert action as

$$
\begin{aligned}
S & =\frac{c^{3}}{16 \pi G} \int_{M} R \sqrt{-g} d^{d} x \\
& \approx \frac{c^{2}}{16 \pi G} \int_{M}\left[\left(\mathscr{K}^{\mu \nu} \mathscr{K}_{\mu \nu}-\mathscr{K}^{2}\right)+c^{2} \Pi^{\mu \nu} \tilde{R}_{\mu \nu}+\frac{c^{4}}{4} \Pi^{\mu \nu} \Pi^{\rho \sigma}(d T)_{\mu \rho}(d T)_{\nu \sigma}\right] E d^{d} x
\end{aligned}
$$

To leading order, this gives the timelike (or electric) Carroll gravity action

$$
S==\frac{1}{16 \pi G} \int_{M}\left[K^{\mu \nu} K_{\mu \nu}-K^{2}\right] e d^{d} x
$$

Carroll expansion of GR: timelike

Leading-order $c \rightarrow 0$ expansion of GR gives timelike/electric Carroll gravity action

$$
S=\frac{1}{16 \pi G} \int_{M}\left[K^{\mu \nu} K_{\mu \nu}-K^{2}\right] e d^{d} x
$$

Agrees with Hamiltonian limits [Henneaux, Salgado-Rebodello]

EOM split into constraint and evolution equations [Hansen, Obers, GO, Søgaard] [Dautourt]

$$
\begin{aligned}
0 & =K^{\mu \nu} K_{\mu \nu}-K^{2} \\
0 & =h^{\rho \sigma} \tilde{\nabla}_{\rho}\left(K_{\sigma \mu}-K h_{\sigma \mu}\right) \\
\mathscr{L}_{\nu} K_{\mu \nu} & =-2 K_{\mu}^{\rho} K_{\rho \nu}+K K_{\mu \nu}
\end{aligned}
$$

Limit of 3+1 Lorentzian EOM. Remarkably, evolution can be solved analytically! \Longrightarrow simpler also at NLO?

Found constraint solutions with physical angular and linear momentum \Longrightarrow solvable subleading dynamics? Relation to BKL limit?

Carroll expansion of GR: spacelike

From other limit can get spacelike/magnetic Carroll gravity action

$$
S=\frac{1}{16 \pi G} \int_{M}\left[h^{\mu \nu} \tilde{R}_{\mu \nu}+\chi^{\mu \nu} K_{\mu \nu}\right] e d^{d} x,
$$

Subset of full NLO action in $c \rightarrow 0$ expansion, no dynamics since $K_{\mu \nu} \sim \mathscr{L}_{v} h_{\mu \nu}=0$

Projecting EOM on spatial hypersurface, constraint is now

$$
0=h^{\mu \nu} \hat{R}_{\mu \nu}
$$

In 3+1 Lorentzian EOM this is responsible for massive solutions $\sim-1+\frac{2 G M}{r}$

Indeed now find isotropic 'black hole' solution

$$
v^{\mu} \partial_{\mu}=\frac{M+2 r}{M-2 r} \partial_{t} \quad h_{\mu \nu} d x^{\mu} d x^{\nu}=\left(1+\frac{M}{2 r}\right)^{4} \delta_{i j} d x^{i} d x^{j}
$$

Dynamics in full NLO theory?

Outlook

Wrapping up, we have

- introduced Newton-Cartan geometry with local Galilean boosts
- obtained it from $c \rightarrow \infty$ expansion of GR
- sketched derivation of Poisson equation from action principle and then
- introduced Carroll geometry with local Carroll boosts
- obtained it from $c \rightarrow \infty$ expansion of GR
- found rich and analytically solvable equations at leading order

Open problems:

- how far can analytic control extend to subleading orders?

- make contact with post-Newtonian and numerical simulations?

