Carroll Gravity, BKL Dynamics and Holography

Gerben Oling

University of Edinburgh

Based on upcoming work with Juan Pedraza

Eurostrings Southampton, September 3rd 2024

Outline

• Introduction: Kasner and BKL in gravity

Carroll limits and geometry

Mixmaster from Carroll gravity

Introduction

Kasner geometries

$$ds^{2} = -dt^{2} + t^{2p_{x}}dx^{2} + t^{2p_{y}}dy^{2} + t^{2p_{z}}dz^{2}$$

homogeneous and anisotropic solution to Einstein equations

Adding spatial curvature or matter: rich and possibly chaotic dynamics ('mixmaster')

BKL conjecture:

this is generic behavior of GR near spacelike singularities

Questions:

- Applications in holography?
- Near-singularity limit vs ultra-local Carroll limit?
- Mixmaster behavior from Carroll limit of GR?

Kasner geometries in GR

Take planar AdS black hole and zoom in behind horizon, $f(z) = 1 - (z/z_H)^3 \approx -(z/z_H)^3$

$$ds^{2} = \frac{1}{z^{2}} \left[-f(z)dt^{2} + \frac{dz^{2}}{f(z)} + dx^{2} + dy^{2} \right]$$

$$\approx -d\tau^2 + \#\frac{dt^2}{\tau^{2/3}} + \#\tau^{4/3} \left(dx^2 + dy^2\right)$$

where $\tau = \tau(z)$ is interior 'radial time'

Example of Kasner geometry with $p_t = -1/3$ and $p_x = p_y = 2/3$

$$ds^{2} = -d\tau^{2} + \tau^{2p_{t}}dt^{2} + \tau^{2p_{x}}dx^{2} + \tau^{2p_{y}}dy^{2}$$

Solution of vacuum Einstein equations if $\sum p_i = 1$ and $\sum (p_i)^2 = 1$

Kasner geometries in GR

Parametrize Kasner solutions using lapse $\alpha(t)$ and scaling exponents $\beta_i(t)$

$$ds^{2} = -e^{-2\alpha(t)}dt^{2} + e^{2\beta_{x}(t)}dx^{2} + e^{2\beta_{y}(t)}dy^{2} + e^{2\beta_{z}(t)}dz^{2}$$

Vacuum Einstein equations then give

$$0 = E_{tt} = \dot{\beta}^{T} \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \dot{\beta} = -\left(\dot{\bar{\beta}}_{1}\right)^{2} + \left(\dot{\bar{\beta}}_{2}\right)^{2} + \left(\dot{\bar{\beta}}_{3}\right)^{2}$$

Interpret $\dot{\beta_i}(t)$ as null vector in Minkowski superspace! [Chitre] [Damour, Henneaux, Nicolai]

After reparametrization $t = t(\tau)$ spatial components $E_{ii} = 0$ give

$$0 = \ddot{\beta}_i(\tau) \qquad \Longrightarrow \qquad \beta_i = \beta_i^{(0)} + v_i \tau$$

so $\beta_i(\tau)$ parametrizes null geodesic in $\mathbb{R}^{1,2}$ superspace!

Maps to (so far simple) particle motion on future hyperboloid $\mathbb{H}^2 \subset \mathbb{R}^{1,2}$

Mixmaster dynamics in GR

Interesting dynamics from spatial curvature and/or matter coupling

Example: SO(3) group manifold ('mixmaster/Bianchi IX') [Misner]

using Maurer-Cartan forms μ^i and scaling parameters $\beta_{ij}(t)=\beta_i(t)\,\delta_{ij}$ get

$$ds^{2} = -e^{-2\alpha}dt^{2} + (e^{2\beta})_{ij}\mu^{i}\mu^{j} \implies V(\beta) = e^{4\beta_{x}} + e^{4\beta_{y}} + e^{4\beta_{z}}$$

Potential modifies null geodesics, bounce around in hyperbolic triangle [Misner] [Chitre]

BKL: this kind of chaotic behavior is generic near singularities [Belinskii, Khalatnikov, Lifshitz]

Kasner geometries in holography

Planar AdS-RN black hole with charged massive scalar (holographic superconductor)

$$S = \frac{1}{2\kappa} \int d^4x \sqrt{-g} \left(R + 6 \right) - \frac{1}{2} \int d^4x \sqrt{-g} \left(\frac{1}{2} F^{\mu\nu} F_{\mu\nu} + D^{\mu} \phi \bar{D}_{\nu} \phi + m^2 \phi^2 \right)$$

- Nontrivial dynamics behind horizon! [Hartnoll, Horowitz, Kruthoff, Santos]
- Many Kasner epochs, but eventually reaches final state

Mixmaster-style chaotic behavior obtained from three gauge fields [De Clerck, Hartnoll, Santos]

$$S = \frac{1}{2\kappa} \int d^4x \sqrt{-g} \left(R + 6 \right) - \frac{1}{2} \int d^4x \sqrt{-g} \left(\frac{1}{2} F_{(i)}^{\mu\nu} F_{\mu\nu}^{(i)} + \mu_{(i)}^2 A_{(i)}^2 \right)$$

- Give same hyperbolic triangle dynamics in interior!
- Many microstates after quantization?

Outline

• Introduction: Kasner and BKL in gravity

Carroll limits and geometry

Mixmaster from Carroll gravity

Carroll geometry

From 'relativistic' Lorentz boosts

$$t \to t + \beta x, \qquad x \to x + \beta t$$

get Carroll boosts in ultra-local $c \to 0$ limit, [Levy-Leblond] [Sen Gupta]

$$t \to t + \lambda x$$
, $x \to x$ and $\partial_t \to \partial_t$, $\partial_x \to \partial_x + \lambda \partial_t$

Less obviously physical than non-relativistic $c \to \infty$ limit, but:

- ullet appears in Lorentzian geometry on null surfaces such as \mathcal{F}^+
- BMS asymptotic symmetries are isomorphic
 to conformal Carroll algebra [Duval, Gibbons, Horvathy, Zhang]

Here: directly use ultra-local limit in GR to find BKL dynamics

Carroll geometry

Curved Carroll geometry is specified by

time vector field $v^{\mu}(x^{\rho})$ and

spatial 'metric' $h_{\mu\nu}(x^{\rho})$

Example: Kasner-type geometry

$$v^{\mu}\partial_{\mu}=-\partial_{t}, \quad h^{\mu\nu}\partial_{\mu}\partial_{\nu}=t^{2p_{x}}dx^{2}+t^{2p_{y}}dy^{2}+t^{2p_{z}}dz^{2}$$

Compatible connection $\,\tilde{\nabla}_{\rho}v^{\mu}=0$ and $\,\tilde{\nabla}_{\rho}h_{\mu\nu}=0$

curvature
$$[\tilde{\nabla}_{\mu}, \tilde{\nabla}_{\nu}] \ X^{\sigma} = -\tilde{R}_{\mu\nu\rho}{}^{\sigma} X^{\rho} - 2\Gamma^{\rho}{}_{[\mu\nu]} \nabla_{\rho} X^{\sigma}$$
 torsion
$$2\tilde{\Gamma}^{\rho}{}_{[\mu\nu]} = 2h^{\rho\sigma} \tau_{[\mu} K_{\nu]\sigma}$$

and extrinsic curvature
$$K_{\mu\nu} = -\frac{1}{2} \mathcal{L}_{\nu} h_{\mu\nu}$$

Carroll limit of GR

Expanding GR in $c \to 0$ gives Carroll gravity at LO [Hansen, Obers, GO, Søgaard]

$$S_{\text{EH}} = \frac{c^2}{2\kappa} \int_{M} \left[K^{\mu\nu} K_{\mu\nu} - K^2 \right] e \, d^d x + \cdots$$

(similar actions found in [Henneaux] [Hartong] [Henneaux, Salgado-Rebodello])

EOM split into constraint and evolution equations [Hansen, Obers, GO, Søgaard] [Dautcourt]

$$\begin{split} 0 &= K^{\mu\nu} K_{\mu\nu} - K^2 \\ 0 &= h^{\rho\sigma} \tilde{\nabla}_{\rho} (K_{\sigma\mu} - K h_{\sigma\mu}) \\ \mathcal{L}_{\nu} K_{\mu\nu} &= -2K_{\mu}{}^{\rho} K_{\rho\nu} + K K_{\mu\nu} \end{split} \qquad \begin{aligned} 0 &= -R^{(3)} + K^{\mu\nu} K_{\mu\nu} - K^2 \\ 0 &= h^{\rho\sigma} \nabla_{\rho}^{(3)} (K_{\sigma\mu} - K h_{\sigma\mu}) \\ \mathcal{L}_{\nu} K_{\mu\nu} &= R_{\mu\nu}^{(3)} - 2K_{\mu}{}^{\rho} K_{\rho\nu} + K K_{\mu\nu} - \nabla_{\mu}^{(3)} a_{\nu} - a_{\mu} a_{\nu} \end{aligned}$$

Evolution equations are now just ODEs!

Solutions include Kasner geometry $v^{\mu}\partial_{\mu}=-\partial_{t}$, $h^{\mu\nu}\partial_{\mu}\partial_{\nu}=t^{2p_{x}}dx^{2}+t^{2p_{y}}dy^{2}+t^{2p_{z}}dz^{2}$ [Søgaard] [Henneaux] [De Boer, Hartong, Obers, Sybesma, Vandoren]

Outline

• Introduction: Kasner and BKL in gravity

Carroll limits and geometry

Mixmaster from Carroll gravity

Carroll matter coupling

Take leading-order Carroll gravity coupled to electric $U(1)^3$ Carroll YM

$$\frac{1}{2\kappa} \int d^d x \, e \left(K^{\mu\nu} K_{\mu\nu} - K^2 \right) + \frac{1}{2g} \int d^d x \, e \, h^{\mu\nu} E^{(i)}_{\mu} E^{(i)}_{\nu}$$

Leads to sourced constraints and evolution equations

$$\frac{1}{2} \left(K^{\rho\sigma} K_{\rho\sigma} - K^2 \right) = -\frac{\kappa}{2g} h^{\mu\nu} E_{\mu}^{(i)} E_{\mu}^{(i)}$$

$$-h^{\alpha\mu} h^{\rho\nu} \tilde{\nabla}_{\rho} \left(K_{\mu\nu} - K h_{\mu\nu} \right) = 0$$

$$\mathcal{L}_{\nu} K_{\mu\nu} - K K_{\mu\nu} + 2 K_{\mu}{}^{\rho} K_{\rho\nu} = \frac{\kappa}{g} \left(E_{\mu}^{(i)} E_{\nu}^{(i)} - \frac{h_{\mu\nu}}{d-1} h^{\rho\sigma} E_{\rho}^{(i)} E_{\sigma}^{(i)} \right)$$

together with gauge field EOM

$$\partial_{\mu} \left(e \, v^{[\mu} h^{\nu]\rho} E_{\rho}^{(i)} \right) = 0$$

Mixmaster from LO Carroll gravity

With homogeneous ansatz, EOM of Carroll gravity coupled to $U(1)^3$ gauge fields give

$$\ddot{\beta}_i = \frac{\kappa}{2g} \left(1 - \partial_{\beta_i} \right) V(\beta)$$

where potential gives mixmaster triangle motion for exponents [GO, Pedraza]

$$V(\beta) = (\phi_x)^2 e^{\sqrt{2/3} \left(\bar{\beta}_0 - \bar{\beta}_1 - \sqrt{3}\bar{\beta}_2\right)} + (\phi_y)^2 e^{\sqrt{2/3} \left(\bar{\beta}_0 - \bar{\beta}_1 + \sqrt{3}\bar{\beta}_2\right)} + (\phi_z)^2 e^{\sqrt{2/3} \left(\bar{\beta}_0 + 2\bar{\beta}_1\right)}$$

Reproduce holographic setup of [De Clerck, Hartnoll, Santos '23] using LO Carroll gravity

Generalize it: in LO Carroll gravity evolution equation is always ODE still get solvable models even without spatial homogeneity!

Diving inside holographic superconductors without translation symmetry? Relate to chaos at horizon using Carroll expansion?

Summary and outlook

Close relation between BKL/mixmaster and Carroll expansion of GR

More models easily accessible from Carroll limits/expansion

Off-shell separation of ultralocality limit and strong gravity limit

Work in progress:

- BKL-type behavior in AdS/CFT with spatial inhomogeneity?
- 'Standard' mixmaster from $R^{(3)}$ in NLO Carroll gravity

Future:

- Expand all the way to horizon? Relation to 'redshift' chaos?
- Contact with mathematical GR literature on BKL?
- Lessons about singularities in AdS/CFT?

